Making the Best of a Leaky Situation: Zero-Knowledge PCPs from Leakage-Resilient Circuits

نویسندگان

  • Yuval Ishai
  • Mor Weiss
  • Guang Yang
چکیده

A Probabilistically Checkable Proof (PCP) allows a randomized verifier, with oracle access to a purported proof, to probabilistically verify an input statement of the form “x ∈ L” by querying only few bits of the proof. A zero-knowledge PCP (ZKPCP) is a PCP with the additional guarantee that the view of any verifier querying a bounded number of proof bits can be efficiently simulated given the input x alone, where the simulated and actual views are statistically close. Originating from the first ZKPCP construction of Kilian et al.(STOC ’97), all previous constructions relied on locking schemes, an unconditionally secure oracle-based commitment primitive. The use of locking schemes makes the verifier inherently adaptive, namely, it needs to make at least two rounds of queries to the proof. Motivated by the goal of constructing non-adaptively verifiable ZKPCPs, we suggest a new technique for compiling standard PCPs into ZKPCPs. Our approach is based on leakage-resilient circuits, which are circuits that withstand certain “side-channel” attacks, in the sense that these attacks reveal nothing about the (properly encoded) input, other than the output. We observe that the verifier’s oracle queries constitute a side-channel attack on the wire-values of the circuit verifying membership in L, so a PCP constructed from a circuit resilient against such attacks would be ZK. However, a leakage-resilient circuit evaluates the desired function only if its input is properly encoded, i.e., has a specific structure, whereas by generating a “proof” from the wire-values of the circuit on an ill-formed “encoded” input, one can cause the verification to accept inputs x / ∈ L with probability 1. We overcome this obstacle by constructing leakage-resilient circuits with the additional guarantee that ill-formed encoded inputs are detected. Using this approach, we obtain the following results: – We construct the first witness-indistinguishable PCPs (WIPCP) for NP with non-adaptive verification. WIPCPs relax ZKPCPs by only requiring that different witnesses be indistinguishable. Our construction combines strong leakage-resilient circuits as above with the PCP of Arora and Safra (FOCS ’92), in which queries correspond to sidechannel attacks by shallow circuits, and with correlation bounds for shallow circuits due to Lovett and Srivinasan (RANDOM ’11). – Building on these WIPCPs, we construct non-adaptively verifiable computational ZKPCPs for NP in the common random string model, assuming that one-way functions exist. – As an application of the above results, we construct 3-round WI and ZK proofs for NP in a distributed setting in which the prover and the verifier interact with multiple servers of which t can be corrupted, and the total communication involving the verifier consists of poly log (t) bits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leakage-Resilient Zero Knowledge

In this paper, we initiate a study of zero knowledge proof systems in the presence of side-channel attacks. Specifically, we consider a setting where a cheating verifier is allowed to obtain arbitrary bounded leakage on the entire state (including the witness and the random coins) of the prover during the entire protocol execution. We formalize a meaningful definition of leakage-resilient zero ...

متن کامل

Constant-Round Leakage-Resilient Zero-Knowledge Arguments of Knowledge for NP

Garg, Jain, and Sahai first consider zero knowledge proofs in the presence of leakage on the local state of the prover, and present a leakageresilient-zero-knowledge proof system for HC (Hamiltonian Cycle) problem. Their construction is called (1 + ε)-leakage-resilient zero-knowledge, for any constant ε > 0, because the total length of the leakage the simulator needs is (1 + ε) times as large a...

متن کامل

Constant-Round Leakage-Resilient Zero-Knowledge from Collision Resistance

We construct a constant-round leakage-resilient zero-knowledge argument system under the existence of collision-resistant hash function family. That is, using collision-resistant hash functions, we construct a constant-round zero-knowledge argument system such that for any cheating verifier that obtains arbitrary amount of leakage of the prover’s state, there exists a simulator that can simulat...

متن کامل

Leakage-Resilient Identification Schemes from Zero-Knowledge Proofs of Storage

We provide a framework for constructing leakage-resilient identification (ID) protocols in the bounded retrieval model (BRM) from proofs of storage (PoS) that hide partial information about the file. More precisely, we describe a generic transformation from any zero-knowledge PoS to a leakage-resilient ID protocol in the BRM. We then describe a ZK-PoS based on RSA which, under our transformatio...

متن کامل

Achieving Constant Round Leakage-Resilient Zero-Knowledge

Recently there has been a huge emphasis on constructing cryptographic protocols that maintain their security guarantees even in the presence of side channel attacks. Such attacks exploit the physical characteristics of a cryptographic device to learn useful information about the internal state of the device. Designing protocols that deliver meaningful security even in the presence of such leaka...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015